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Like Kac-Moody Lie algebras, extended affine Lie algebras are a generaliza-
tion of affine Lie algebras and of simple finite-dimensional complex Lie algebras.
But contrary to arbitrary Kac-Moody algebras, extended affine Lie algebras have
concrete realizations. In this report we will give some rough ideas about their
structure theory. The main examples of extended affine Lie algebras are toroidal
Lie algebras.

0. A pivotal example: Untwisted affine Lie algebras. All algebras will
be over a field F of characteristic 0. Let g be a split simple Lie algebra g, let
L = g ⊗ F [t±1] be the associated loop algebra, K = L ⊕ Fc its universal central
extension, and put E = K ⊕ Fd (semidirect product), where d is the degree
derivation of K sending x ⊗ tn to n(x ⊗ tn) and annihilating Fc. We thus have
a diagram of 3 related Lie algebras (see below), where E or sometimes even K
is referred to as an untwisted affine Kac-Moody Lie algebra. In the theory of
extended affine Lie algebras, this diagram is generalized by replacing the loop
algebra L by a centreless Lie torus, the algebra K by a central extension of L,
which is also a Lie torus, and E by an extended affine Lie algebra, abbreviated
EALA:

K ↪→ E
↓
L

Ã
Lie torus K ↪→ EALA E
↓
centreless
Lie torus L

1. Extended affine Lie algebras. Due to space limitations we will not give
the precise definitions. Rather the reader is referred to [1] for a definition of an
EALA over C and to [14] for a definition over a field F of characteristic 0. Closely
related Lie algebras are considered in [7] and [8]. While these definitions do not
agree in general, not even over F = C, the following most important features
(EA1)-(EA3) of an extended affine Lie algebra E are present in all approaches.

(EA1): E has a nondegenerate invariant symmetric bilinear form (.|.).
(EA2): E contains a nontrivial finite-dimensional self-centralizing and ad-

diagonalizable subalgebra H.
To prepare the axiom (EA3) note that by (EA2) the algebra E has a root space
decomposition E =

⊕
ξ∈H∗ Eξ with E0 = H, where, as usual, Eξ = {e ∈ E :

[h, e] = ξ(h)e for all h ∈ H}. The invariance of (.|.) implies that (Eξ|Eζ) = 0 for
ξ + ζ 6= 0. It follows that (.|.) restricted to H ×H is nondegenerate. Hence, every
ξ ∈ H∗ is represented by a unique tξ ∈ H via (tξ|h) = ξ(h) for all h ∈ H. The
subalgebra Ec of E, generated by {Eξ : (tξ|tξ) 6= 0} is called the core of E.

(EA3): For ξ ∈ Ran and xξ ∈ Eξ, the endomorphism ad xξ ∈ EndF E is
locally nilpotent.

Depending on the authors, several other axioms are added to (EA1)–(EA3). They
mostly concern the nature of the root system R of an EALA.
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2. Lie tori. As indicated in the diagram above, the loop algebra in the
construction of an untwisted affine Lie algebra is replaced by a Lie torus. The
essential properties of a Lie torus L are the following: L has two compatible
gradings, one by the abelian group Zn and one by the root lattice of a finite
irreducible root system ∆. With respect to the second grading, the only non-zero
homogeneous spaces of L have degrees in ∆ ∪ {0}. In addition, one requires the
existence of enough sl2-triples. The precise definition is given in [13], see [16] for
a different approach.

Due to the efforts of many people, one now has a complete and precise clas-
sification of centreless Lie tori: [10] for ∆ = Al, l ≥ 3, and ∆ = Dl, l ≥ 4 and
∆ = El, l = 6, 7, 8; [11] for ∆ = A2; [15] for ∆ = A1; [3] for ∆ reduced, but
not simply-laced; [6] and [5] for ∆ = BC1; [12] for ∆ = BC2; and finally [4] for
∆ = BCl, l ≥ 3. For example, if g is a split simple finite-dimensional Lie algebra
of type ∆ the associated multiloop algebra L = g ⊗ F [t±1

1 , . . . , t±1
n ] is always a

centreless Lie torus. If ∆ is of type D or E, this covers all possibilities. However,
already for ∆ of type A, more general algebras do occur. Many of them are re-
lated to quantum tori. It is amazing that in order to classify Lie tori one needs
all important classes of nonassociative algebras, namely alternative algebras for
∆ = A2, Jordan algebras for ∆ = A1, structurable algebras for ∆ = BC1, BC2,
and a mixture of these for the other types.

The first step in understanding the structure of extended affine Lie algebras is
the following.

3. Proposition. ([1, 3, 14, 17]) Let E be an extended affine Lie algebra. Then
its core Ec is a Lie torus, and Ec/Z(Ec) is a centreless Lie torus.

The proposition above begs the question: Does every centreless Lie torus L
arise from an extended affine Lie algebra E? If yes, how can one reconstruct E
from L? These questions will be answered in Th. 4 below. As can already be seen
from the papers [10] and [11] there are in general infinitely many extended affine
Lie algebras associated to a given centreless Lie torus.

4. Construction. Let L be a centreless Lie torus. As explained above, L is
Zn-graded, say L =

⊕
λ∈Zn Lλ. Let ∂i, 1 ≤ i ≤ n be the ith degree derivation,

∂ix = λix for x ∈ Lλ, λ = (λ1, . . . , λn) and let D = spanF {∂1, . . . , ∂n}. Also, let
C = {χ ∈ EndF L : [χ, adx] = 0 for all x ∈ L} be the centroid of L. It is shown
in [9] that C =

⊕
ξ∈Ξ Cξ is graded by a subgroup Ξ of Zn. We note that CD is

a subalgebra of derivations, the so-called skew-centroidal derivations of L. It is
also known that L has an essentially unique invariant nondegenerate symmetric
bilinear form (.|.) [17]. We denote by SCDerL the subalgebra of CD consisting of
the skew-symmetric derivations in CD. It is a Ξ-graded algebra.

As a second ingredient of our construction, let D =
⊕

ξ∈Ξ Dξ be a graded
subalgebra of SCDerL with the property that D0 induces the Zn-grading of L, i.e.,
the Lλ are the joint eigenspaces of D0. The graded dual Dgr∗ is canonically a D-
module. Associated to D and the bilinear form (.|.) is a 2-cocycle σ : L×L → Dgr∗,
given by σ(x, y)(d) = (dx|y) for x, y ∈ L and d ∈ D. Thus, we have a central
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extension K = L ⊕Dgr∗ with product [x ⊕ φ , y ⊕ ψ]K = [x, y]L ⊕ σ(x, y), where
x, y ∈ L and φ, ψ ∈ Dgr∗. We can also form the semidirect product E = K ⊕D.
While this will be an extended affine Lie algebra, it is not general enough. Rather,
one can twist the product on E by a special 2-cocycle τ : D × D → Dgr∗. We
denote the corresponding Lie algebra by E(L, D, τ).

4. Theorem ([14]) The Lie algebra E(L,D, τ) is an extended affine Lie al-
gebra. Conversely, every extended affine Lie algebra E arises in this way with
L = Ec/Z(Ec) and appropriate choices of D and τ .

An important point in the proof of this theorem is
5. Theorem ([13]) Let L be a centreless Lie torus of type ∆ 6= A. Then L is

finitely generated as a module over its centroid.
As an immediate corollary of this result, it follows from [2] that over an alge-

braically closed field of characteristic 0 every centreless Lie torus of type ∆ 6= A
is a so-called multiloop algebra.
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